Life cycle analysis of a biodegradable thermoacoustic material.

Authors

DOI:

https://doi.org/10.70577/j95gam97

Abstract

 Sustainable construction faces the growing need to reduce the environmental impact of the materials used, especially in terms of thermal and acoustic insulation. However, many traditional materials for these purposes, such as synthetic plastics and petrochemical-based insulators, are non-biodegradable and have a high environmental impact. This research addressed the life cycle analysis of a biodegradable thermoacoustic material. The increasing production of conventional plastic waste significantly contributes to residual pollution and also impacts the increase in greenhouse gases. It is evident that innovative proposals are needed to mitigate polluting impacts and promote eco-friendly practices in materials production. Furthermore, a market study was conducted to determine the product's level of acceptance and the target segments, thus defining the target market. The market study allowed for an approximation of the thermoacoustic material's selling price and determined its market viability.

Downloads

Download data is not yet available.

References

Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7-8), 1601-1607. https://doi.org/10.1016/j.compscitech.2008.01.004Conacyt (2019). Programas Nacionales Estratégicos. https://conahcyt.mx/pronaces/

Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2(7), 491-496. https://doi.org/10.1038/nclimate1452

Elsawy, M. A., Kim, K.-H., Park, J.-W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. https://doi.org/10.1016/j.rser.2017.05.143

Fried, J. R. (2014). Polymer science and technology (Third edition). Prentice Hall.

Frone, A. N., Berlioz, S., Chailan, J. ‐F., Panaitescu, D. M., & Donescu, D. (2011). Cellulose fiber‐reinforced polylactic acid. Polymer Composites, 32(6), 976-985. https://doi.org/10.1002/pc.21116

González, M., Rodríguez, S., & Pérez, D. (2019). Construcción sostenible: Nuevas alternativas de materiales ecológicos en la arquitectura moderna. Ediciones Tecnológicas, 18(2), 53-68.

Intergovernmental Panel on Climate Change (IPCC). (2018). Global Warming of 1.5°C: An IPCC Special Report. Cambridge University Press.

Intergovernmental Panel on Climate Change (IPCC). (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/9781009157896

Kowalczyk, M., Piorkowska, E., Kulpinski, P., & Pracella, M. (2011). Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites Part A: Applied Science and Manufacturing, 42(10), 1509-1514. https://doi.org/10.1016/j.compositesa.2011.07.003

Landon-Lane, M. (2018). Corporate social responsibility in marine plastic debris governance. Marine Pollution Bulletin, 127, 310-319. https://doi.org/10.1016/j.marpolbul.2017.11.054

Mendoza, V., Pérez, C., & Ruiz, M. (2020). Innovaciones en materiales de construcción sustentables y su impacto en la eficiencia energética. Revista de Arquitectura y Construcción, 32(1), 15-28.

NASA. (2023). Global Climate Change: Vital Signs of the Planet. NASA. https://climate.nasa.gov/

Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylacticacid (PLA) composites. Composites Science and Technology, 63(9), 1317-1324. https://doi.org/10.1016/S0266-3538(03)00103-9

Paletta, A., Leal Filho, W., Balogun, A.-L., Foschi, E., & Bonoli, A. (2019). Barriers and challenges to plastics valorisation in the context of a circular economy: Case studies from Italy. Journal of Cleaner Production, 241, 118149. https://doi.org/10.1016/j.jclepro.2019.118149

SAGARPA. (2015). Plan de manejo de residuos generados en actividades agrícolas primera etapa: Diagnóstico nacional.

SEMARNAT. (2023). INVENTARIO NACIONAL DE FUENTES DE CONTAMINACIÓN PLÁSTICA. SEMARNAT.

Smith, P., Gregory, P. J., van Vuuren, D. P., Olesen, J. E., & Ruane, A. C. (2014). Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change (pp. 811-922). Cambridge University Press.

Zeleke, N. M., Sinha, D. K., & Kumar, S. (2024). Multi-objective optimization of micro crystalline cellulose and montmorillonite filled poly lactic acid bio–composite and its characterizations. Journal of Engineering and Applied Science, 71(1), 191. https://doi.org/10.1186/s44147-024-00525-4

Downloads

Published

2025-12-04

How to Cite

Life cycle analysis of a biodegradable thermoacoustic material. (2025). Perspectiva XXI, 3(4), 308-327. https://doi.org/10.70577/j95gam97

Most read articles by the same author(s)